The Evolution and Functional Impact of Human Deletion Variants Shared with Archaic Hominin Genomes
نویسندگان
چکیده
Allele sharing between modern and archaic hominin genomes has been variously interpreted to have originated from ancestral genetic structure or through non-African introgression from archaic hominins. However, evolution of polymorphic human deletions that are shared with archaic hominin genomes has yet to be studied. We identified 427 polymorphic human deletions that are shared with archaic hominin genomes, approximately 87% of which originated before the Human-Neandertal divergence (ancient) and only approximately 9% of which have been introgressed from Neandertals (introgressed). Recurrence, incomplete lineage sorting between human and chimp lineages, and hominid-specific insertions constitute the remaining approximately 4% of allele sharing between humans and archaic hominins. We observed that ancient deletions correspond to more than 13% of all common (>5% allele frequency) deletion variation among modern humans. Our analyses indicate that the genomic landscapes of both ancient and introgressed deletion variants were primarily shaped by purifying selection, eliminating large and exonic variants. We found 17 exonic deletions that are shared with archaic hominin genomes, including those leading to three fusion transcripts. The affected genes are involved in metabolism of external and internal compounds, growth and sperm formation, as well as susceptibility to psoriasis and Crohn's disease. Our analyses suggest that these "exonic" deletion variants have evolved through different adaptive forces, including balancing and population-specific positive selection. Our findings reveal that genomic structural variants that are shared between humans and archaic hominin genomes are common among modern humans and can influence biomedically and evolutionarily important phenotypes.
منابع مشابه
Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes
Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. ...
متن کاملThe Mitonuclear Dimension of Neanderthal and Denisovan Ancestry in Modern Human Genomes
Some human populations interbred with Neanderthals and Denisovans, resulting in substantial contributions to modern-human genomes. Therefore, it is now possible to use genomic data to investigate mechanisms that shaped historical gene flow between humans and our closest hominin relatives. More generally, in eukaryotes, mitonuclear interactions have been argued to play a disproportionate role in...
متن کاملSmall Amounts of Archaic Admixture Provide Big Insights into Human History
Modern humans overlapped in time and space with other hominins, such as Neanderthals and Denisovans, and limited amounts of hybridization occurred. Here, we review recent work that has identified archaic hominin sequence that survives in modern human genomes and what these genomic excavations reveal about human evolutionary history.
متن کاملUsing the neanderthal and denisova genetic data to understand the common MAPT 17q21 inversion in modern humans.
The polymorphic inversion on 17q21, that includes the MAPT gene, represents a unique locus in the human genome characterized by a large region with strong linkage disequilibrium. Two distinct haplotypes, H1 and H2, exist in modern humans, and H1 has been unequivocally related to several neurodegenerative disorders. Recent data indicate that recurrent inversions of this genomic region have occur...
متن کاملHuman Evolution: Genomic Gifts from Archaic Hominins
The dispersal of humans throughout the world was accompanied by adaptations to local environments. New research shows that a previously identified haplotype of the EPAS1 gene, which allows Tibetans to live at high altitude, was inherited from archaic hominin ancestors.
متن کامل